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Abstract:  

Alfalfa is one of the most cul�vated perennial legume crops as feedstock for animals. Efficiently 
es�ma�ng alfalfa yield and quality traits before harves�ng is cri�cal for the decision-making process 
regarding precision management ac�vi�es and harves�ng �me to ensure high profitability. Satellite-
based radar is a powerful tool for crop monitoring because it provides high-quality data regardless of 
weather condi�ons. Therefore, this study inves�gated the poten�al of satellite radar features in 
es�ma�ng alfalfa yield and quality. Alfalfa yield and quality traits, including dry mater yield (DMY), crude 
protein (CP), neutral detergent fiber (NDF), NDF diges�bility (NDFD), and acid detergent fiber (ADF), 
were collected over 16 alfalfa fields from 2016 to 2021, leading to 126 samples in total. Environmental 
factors and High-resolu�on radar backscatering coefficients (𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜  and 𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 ) of all the fields across all 
growing seasons were collected from Daymet V4 product and Sen�nel-1 Ground Range Detected 
products in C-band. Four commonly used machine learning models were established to es�mate alfalfa 
traits using the radar backscatering coefficients with different �me features. Results showed that the 
Extreme Gradient Boos�ng model consistently performed the best for all alfalfa traits. The DMY 
es�ma�on highly agreed with the measured values with an average R2 of 0.64 and RMSE of 0.71 tons/ha. 
The best result for es�ma�ng CP was with an average R2 of 0.72 and RMSE of 1.58%. The performance in 
es�ma�ng alfalfa fiber indicators (i.e., ADF, NDF, and NDFD) was achieved with the highest average R2 of 
0.54, 0.64, and 0.60, respec�vely. Machine learning models were integrated into an open-source website 
built on Flask, HTML and JavaScript, allowing users to display exis�ng yield maps. In addi�on to this, 
users can also customize the date and area, and the backend of the website performs online data search 
and yield predic�on and display the results.  
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1. Introduc�on: 

Alfalfa is a valuable and intensively produced perennial forage crop in the United States, and precise 
management to achieve forage yield and quality goals is cri�cal to op�mize profitability. Pre-harvest 
insight into yield and quality can enable real-�me management responses to fluctua�ng market 
condi�ons or feed needs. However, the acquisi�on of �mely informa�on at the field scale is limited using 
tradi�onal measurements such as destruc�ve sampling and assessment of plant maturity. Although on-
harvester yield mapping systems exist, the state of technology in yield mapping of alfalfa results in yield 
maps that are generated a�er harvest. While on-harvester predic�on exists for silage making, dry hay 
produc�on quality is expensive in terms of labor to obtain samples and laboratory fees. Consequently, 
producers are not able to use this data to make �mely management decisions. Therefore, there is a 
cri�cal need to develop an efficient and cost-effec�ve tool to es�mate alfalfa yield and quality at the 
field-scale. 

The advances of remote sensing techniques can provide a non-destruc�ve and efficient way to monitor 
crop growth, and thus have great poten�al for crop yield and nutri�ve quality analysis. In this context, 
publicly available satellite imagery offers unparalleled opportuni�es for land surface monitoring and 
characteriza�on over space and �me domains, with far-reaching socio-economic benefits [1]. Satellite 
remote sensing has been widely used in agriculture, including weed–crop discrimina�on [2]; monitoring 
crop growth and health status [3]; and yield mapping and predic�on [4]. Although demonstrated by 
previous studies with promising performance, success in crop monitoring on par�cular regions could be 
limited by solely relying on satellite op�cal data because areas at high la�tudes on earth are severely 
affected due to cloud, fog, and evapora�on, resul�ng in up to 80% of them missing for those areas[5,6]. 
Instead, radar-based satellites could be a solu�on to the areas as they func�on by transmi�ng and 
receiving electromagne�c waves in microwave ranges, which are nearly unaffected by clouds due to 
their long wavelength[7]. Synthe�c aperture radar (SAR) satellites, a form of radar satellites, collect data 
with a finer spa�al resolu�on by u�lizing the synthe�c aperture antenna for capturing data from the 
target. Sen�nel-1 is a combina�on of two SAR satellites deployed by the European Space Agency in 2014 
and 2015, providing C-band SAR data with a spa�al resolu�on of 5 meters in range and 20 meters 
azimuth in Interferometric Wide Swath mode [8]. Sen�nel-1 provides free and high-resolu�on SAR 
backscatering coefficients which have been recently used for a variety of crop monitoring purposes, 
including aboveground biomass (AGB), height, and leaf area index in large pasture fields [9], quan�ty and 
quality of semi-natural grassland forage[10], and biophysical parameters of wheat, soybeans, and canola 
[11]. This study inves�gated the poten�al of satellite radar data, par�cularly Sen�nel-1 SAR data, and 
environmental factors during the alfalfa regrowth in es�ma�ng their DMY and quality traits. 

Simple linear regression models have been developed in remote sensing of crop yield and nutri�ve 
quality. However, remote sensing data are complex and the rela�onship between the yield/quality and 
the imagery can be non-linear. More complex machine learning models are needed. Through training 
and upda�ng the parameters, the machine learning model gradually approaches the true numerical 
rela�onship between input features and the target yield and quality. 

Given this background, we developed an open-source, web-based tool that employs the use of satellite 
remote sensing and machine learning to provide predic�on of alfalfa yield and quality for precision 
management. 

 



2. Materials and Methods: 

2.1. Study Area and ground data sampling 

The study was conducted from 2013 to 2021 at the Arlington Agricultural Research Sta�on (AARS, 
la�tude of 43° 16’ N to 43° 20’ N and longitude of 89° 19’ W to 89° 24’ W) and Marshfield Agricultural 
Research Sta�on (MARS, la�tude of 44° 43’ N to 44° 48’ N and longitude of 90° 04’ W to 90° 08’ W) at 
the University of Wisconsin-Madison. From 2016 to 2021, ground data (i.e., alfalfa DMY, CP, ADF, NDF, 
and NDFD) were collected in seven sites at AARS and nine sites at MARS. The geographic loca�on of the 
research sta�ons and distribu�on of the sampling sites are shown in Figure 1. Alfalfa in each site was 
sampled three to four �mes in each growing season star�ng from the first year to three years a�er 
seeding. The detailed sampling �mes for all the sites are listed in Table 1. The first cut (sampling) of 
individual sites in a year usually happened at the end of May, there was around one-month interval 
between two cuts. Therefore, the second, third, and fourth cuts happened at the end of June, July, and 
August, respec�vely. In total, 126 samples were collected for measuring alfalfa DMY and quality traits, 
featured by the sites, years, and cu�ng orders. 

The total wet yield (kg) of each experimental site was obtained during the harvest by weighing the 
empty and full trucks carrying the harvested forage with an on-farm drive-over scale [12]. The total DMY 
(kg) was then obtained by mul�plying the total wet yield by a dry/wet ra�o obtained using two dried 
samples which were randomly selected from each harvest. Then, the DMY (kg/ha) was the total DMY 
divided by each field size. The two selected samples were also used for quality measurement using NIR 
analysis. Results from the two forage samples were averaged for each harvest [12]. 

 



 Figure 1. The two study areas and the distribu�on of their sampling sites. The RGB images were created 
using backscatering coefficients derived from Sen�nel-1 GRDH data on July 24, 2020, where blue: 𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 , 
green: 𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 , and Red: 𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 /𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 . 

Table 1. Sampling sites and �meline 

Site ID Year seeded Alfalfa variety Sampling years 
(Number of samples) 

AARS-593 2013 Pioneer 55V50 2016 (4), 2017 (4) 
AARS-348 2014 Mixed RR varie�es 2016 (4), 2017 (4), 2018 (4) 
AARS-217E 2015 Pioneer 55V50/ Dairyland HF3400 2016 (4), 2017 (4), 2018 (4) 
AARS-244N 2016 HVXRR 4.0 Brand 2017 (4), 2018 (4), 2019 (4) 
AARS-Wendt 2017 Pioneer 55VR08 2018 (4), 2019 (4), 2020 (4) 
AARS-110 2018 Jung 4R418 2019 (4), 2020 (4), 2021 (4) 
AARS-Sutcliffe 2019 HybriForce 3431 2020 (4), 2021 (4) 
MARS-109 2014 Dairyland Magnum 7/wet 2016 (3), 2017 (4) 
MARS-JC1 2015 Dairyland Magnum 7/wet 2016 (3), 2017 (3) 
MARS-404 2016 Dairyland Hybriforce 3405 2017(3),2018 (4) 
MARS-504 2016 Dairyland 2420/wet 2017 (3), 2018 (4) 
MARS-MF1 2017 Dairyland 3420/wet 2018 (4), 2019 (3) 
MARS-202 2018 Dairyland 3420/wet 2019 (4), 2020 (4) 
MARS-502 2018 Dairyland 3420/wet 2019 (4) 
MARS-412 2016 Pioneer 55V50 2016 (1) 
MARS-104 2019 Dairyland 3420/wet 2020 (3) 

Major environmental factors during alfalfa regrowth were collected from Daymet V4 [13], including the 
daylight dura�on (period of days during which the sun is above a hypothe�cal flat horizon), precipita�on, 
incident shortwave radia�on flux density or radia�on for short (taken as an average over the daylight 
period of the day), and vapor pressure (VP, daily average par�al pressure of water vapor). Growing 
degree days (GDD) were calculated to assess crop development over the regrowth period, using Eq. 1. 
We used the cumula�ve values of each environmental factor over the regrowth before each cut (around 
one month period) as input variables for further analysis. For the first cut in a year, we calculated the 
cumula�ve values from 30 days prior to the cut to the day before the cut, and for the second to fourth 
cut, we calculated the cumula�ve values from the day a�er the previous cut to the day before the 
current cut. 

GDD =𝑇𝑇𝑎𝑎_𝑚𝑚𝑚𝑚𝑚𝑚+𝑇𝑇𝑎𝑎_𝑚𝑚𝑚𝑚𝑚𝑚
2

− 𝑇𝑇𝑎𝑎_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (1) 

where, Ta_max and Ta_max is the maximum and minimum air temperature in a day. Ta_base was set to 5 °C.  

2.2. Satellite Image Acquisition and Processing   

Sen�nel-1 imagery over all the experimental sites from 2016 to 2021 was acquired and processed for 
es�ma�ng alfalfa yield and quality traits. The two polar-orbi�ng satellites (Sen�nel-1 A and B) have 
provided imagery with a nominal six-day temporal resolu�on, leading to a total of 53 imaging days 
during the sampling �meline. The SAR data were collected from the high-resolu�on Ground Range 
Detected (GRD) products of Sen�nel-1 in interferometric wide swath (IW) mode.  

As shown in Figure 2, the GRD images were downloaded and preprocessed using Google Earth Engine 
(GEE) cloud pla�orm, which have been pre-processed using the Sen�nel-1 toolbox provided by the 
European Space Agency. To derive GRD product, there were five steps: 1) applying orbit file, 2) GRDH 
border noise removal, 3) thermal noise removal, 4) radiometric calibra�on compu�ng backscater 
coefficients using sensor calibra�on parameters in the GRD metadata, and 5) terrain correc�on.  Note 



that GEE provides SAR data at spa�al resolu�on of 10-meters that was resampled to 30-meters with 
nearest approach in this study. Backscatering coefficients VV (𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 ) and VH (𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 ) along with the CR 
(𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 /𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 ), DPSVIm ((𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 ∗ 𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 + 𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 ∗ 𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 )/√2) [14],Pol ((𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 − 𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 )/(𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 + 𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 )) [15], RVIm 
(4 ∗ 𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 /(𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 + 𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 )) [16]  and the VH-VV (𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 − 𝜎𝜎𝑉𝑉𝑉𝑉𝑜𝑜 ) were used as input features to es�mate the 
alfalfa DMY and quality traits. To evaluate performance of radar features collected at different alfalfa 
growth stages, those from single-�me (i.e., the closest day to the ground sampling date) and dual-�me 
(the day before the closest day and the closest day) were separately used to train the machine learning 
models for es�ma�ng each of the alfalfa traits.  Each sample was featured with a Gap variable, indica�ng 
the day’s difference between when the sample was cut and imaged (the satellite acquisi�on dates). To 
increase the sample size for machine learning modeling, we resampled the dataset by stacking samples 
with early features and late features and removed those that were imaged too long ago from the 
sampling days (i.e., Gap > 12 days), leading to a dataset with 216 samples training and valida�ng the 
machine learning models. 

 

Figure 2. Workflow of objec�ve 1 

 

2.3. Machine Learning Models and Performance Evaluation 



To evaluate the performance of machine learning models in es�ma�ng alfalfa DMY and quality traits, 
four models that have been widely used in es�ma�ng crop traits with remote sensing data, namely 
Support Vector Regression (SVR), Mul�layer Perceptron (MLP), Random Forest (RF), and Extreme 
Gradient Boos�ng (XGB), were developed and validated using the dataset. Op�mal hyperparameters in 
each model were found for each alfalfa trait using a grid search algorithm. The search range and steps 
for all the hyperparameters are listed in Table. 2 as well as their op�mized values. The model 
performance was evaluated using the ten-fold cross-valida�on (CV) which was repeated for each alfalfa 
trait for 20 �mes. In each of the repe��ons, the coefficient of determina�on (R2), root mean square 
error (RMSE), and mean absolute error (MAE) were calculated between the es�mated and measured 
values. Averages of the three metrics over the 20 CV repe��ons were reported. 

Table 2. Grid search specifica�ons and op�mized values for hyperparameters of the machine learning models. 

Model Hyperparame
ter Searching Range Op�mized values*  

DMY ADF NDF NDFD CP 

SVR c 1 0.01, 0.1, 0.5,1, 5,10, 100 10(5) 100(100) 100(100) 100(10) 5(100) 
g 2 0.01, 0.1, 0.5,1, 5,10, 100 1(0.01) 0.5(0.01) 1(0.01) 0.1(5) 5(0.01) 

MLP 

act 4 'iden�ty', 'logis�c', 'tanh', 'relu' 'relu' 
('relu') 

'tanh' 
('logis�c') 

'tanh' 
('relu') 

'tanh' 
('tanh') 

‘tanh’ 
('logis�c') 

solver 5 'adam', 'sgd' 'adam'('adam') 'sgd'('sgd') 'sgd'('sgd') 'sgd'('sgd') 'sgd'('sgd') 
hl 6 10,15,20,25,30,35,40 30(15) 15(35) 30(40) 30(40) 40(35) 
bs 7 20,24,32,40 20(20) 20(32) 24(20) 20(40) 32(32) 
rs 8 0,1,2,3 0(3) 3(2) 0(1) 3(3) 1(1) 

RF 

m-feature 9 'sqrt', 'log2', 0.3,0.5,1 0.5(0.5) 0.5(0.5) 0.5(1) 0.5(1) 0.5(0.5) 
n-est 10 30, 40, 50, 80,100 100(40) 30(40) 40(100) 100(40) 50(80) 
m-sl 11 2,4,6,8,10 2(6) 2(2) 2(2) 2(2) 2(8) 

rs 0,1,2,3 1(1) 3(2) 0(3) 0(1) 3(3) 

XGB 

m-depth 12 3,4,5,6,7,8 5(3) 6(3) 3(3) 7(3) 6(3) 
n-est 30,40,50,80,100 100(40) 100(100) 100(40) 100(50) 100(40) 
lr 13 0.01,0.05,0.1 0.1(0.1) 0.1(0.05) 0.1(0.1) 0.1(0.1) 0.1(0.1) 

tree_method 'exact','approx','hist' 'approx' 
('exact') 

'approx' 
('exact') 

'exact' 
('exact') 

'approx' 
('exact') 

'exact' 
('exact') 

alpha 14 0.4,0.5,0.8,1 0.4(0.4) 0.5(1) 0.4(1) 0.8(1) 1 (0.8) 
lambda 15 0.6,0.8,1,1.2 0.6(0.8) 0.8(0.6) 0.6(0.6) 0.8(0.6) 0.6(1.2) 

SVR parameters: 1 squared L2 penalty and 2 gamma in the radial basis function kernel; MLP parameters: 4 activation 
function, 5 the solver for weight optimization, 6 hidden layers, 7 batch size, and 8 random state; RF parameters: 9 the 
number of features for the best split, 10 number of trees, and 11 minimum number of samples required to be at a leaf 
node; XGB parameters: 12 maximum depth, 13 learning rate, 14 L1 regularization term on weights, and 15 L2 
regularization. 
*Values in parentheses are obtained by using features other than environmental factors as model inputs 

 

2.4. Python-based web tool 

To improve data accessibility and promote the u�liza�on of our yield predic�on model, we have 
designed and implemented a user-friendly web-based interface for visualizing the results. we chose to 
employ PythonAnywhere as our online development environment and hos�ng service, allowing us to 
seamlessly deploy and run our applica�on on the web. 

For the front-end of our interface, we cra�ed an interac�ve web page using a combina�on of HTML and 
JavaScript. This front-end component is responsible for presen�ng the results and enabling user 
interac�ons, ensuring a smooth and intui�ve experience for our users. On the backend side, we 
harnessed the power of Flask, a lightweight micro web framework for Python, to build the server and 
applica�on logic. Flask provides us with the necessary tools for handling HTTP requests, rou�ng, and 



data processing. This choice of backend technology not only streamlines the development process but 
also ensures the scalability and performance of our web applica�on. All the data generated and u�lized 
by our yield predic�on model is stored in the file system provided by PythonAnywhere, making it readily 
available for processing and presenta�on within the web interface. 

By combining these technologies and services, we have created an accessible and user-friendly pla�orm 
for visualizing the results of our yield predic�on model. Users can effortlessly access and interact with 
the data, ul�mately enhancing the u�lity and adop�on of our model. 

 

3. Project Objec�ves and Corresponding Results: 

Objec�ve 1: Develop machine learning models to es�mate in-season alfalfa yield and quality using 
mul�-source data and validate the results on Wisconsin Alfalfa Yield and Persistence database. 

Result: Four machine learning models were established to es�mate alfalfa traits using the radar 
backscatering coefficients. The DMY es�mates given by the MLP model highly agreed with the 
measured values (R2 = 0.64 and RMSE = 0.71 tons/ha). Among all the traits, the CP was es�mated with 
the highest accuracy with R2 = 0.72 and RMSE = 1.58% by the XGB model. Compared to the DMY and CP, 
the es�mates for three fiber indicators had lower accuracies with the highest average R2 of 0.54, 0.64, 
and 0.60, respec�vely.  

 

Objec�ve 2: Create an open-source web-based tool to provide end-users with in-season alfalfa yield 
and quality maps to assess their spa�al variability for precision management decisions. 

Result: The publicly accessible website address is htps://alfalfabse.pythonanywhere.com/ . Aside from 
merely viewing the yield predic�on map for the study area, users also have the op�on to customize the 
area-of-interest (AOI) and date. The website has the capability to search for data, execute the predic�on 
algorithm, and subsequently display the yield predic�on map. 

 

4. Results and Discussion: 

4.1.  Performance for alfalfa DMY and quality traits   

Figure 3 shows scaterplots between the alfalfa measured and es�mated values given by the op�mal 
trained models. The DMY es�mates given by the XGB models highly agreed with the measured values 
with an average R2 of 0.64 and RMSE of 0.71 tons/ha over the 20 repeated CV. The model performances 
benefited from the rela�onships between either DMY or backscatering coefficients with vegeta�on 
water content (VWC). DMY, though measured as the weights of water-free substances in vegeta�on 
samples, has a high correla�on with the VWC. Zhou et al in [17] and Bhatacharya et al. [18] in showed a 
strong linear rela�onship (r = 0.96) between DMY and VWC. Logically, vegeta�on with more water has a 
higher capacity to sustain the water, supported by a larger volume of dry mater. On the other hand, 
radar backscatering coefficients from vegeta�on are highly related to its VWC because water absorbs 
more energy than other substances in vegeta�on [19,20]. Consequently, vegeta�on with higher VWC 
tends to reflect fewer radar signals than those with lower VWC. 

https://alfalfabse.pythonanywhere.com/


 

Figure 3. Scaterplots of the es�mated and measured alfalfa yield and quality traits, where a - e are for 
DMY, CP, ADF, NDF, and NDFD, respec�vely. Es�mates of DMY and quality traits were given by the XGB. 
Es�mated values in the plots for individual samples and evalua�on metrics were averaged over the 20 
�mes cross valida�on process.  

Our results are compe��ve compared to previous studies using satellite op�cal data. [21] reported an R2 
of 0.92, RMSE of 1.1 tons/ha, and MAE of 0.8 tons/ha using the GPR model with the selected �me-series 
Landsat 8 and PROBA-V features. Using single-�me satellite SAR data requires less data processing and 
computa�onal efforts, but in the meanwhile achieving lower average errors. The best performance in 
es�ma�ng alfalfa DMY in published literature was with an R2 = 0.94 and RMSE = 0.25 t/ha, reported by 
[22], which, however, requires high-resolu�on images from UAV as well as satellite imagery from three 
pla�orms (i.e., Sen�nel-2, Landsat-8, and MODIS). Overall, the performance of this study is promising for 
prac�cal use in es�ma�ng alfalfa DMY.  

For es�ma�ng CP, the best result with an average R2 of 0.72 and RMSE of 1.58% was given by the XGB 
model (Figure 3b). The CP concentra�on in alfalfa is related to chlorophyll concentra�on that is closely 
dependent on its water and nitrogen status [10]. Therefore, it could be reflected by the backscatering 
coefficients. The CP es�mates agreed the most with the measured values in our studies, demonstra�ng 
its u�lity for prac�cal use [10,23,24]. The performance in es�ma�ng alfalfa fiber indicators (i.e., ADF, 
NDF, and NDFD) is shown in Figures 3 c-e, with the highest average R2 of 0.54, 0.64, and 0.60, 
respec�vely. The best es�mates for the three fiber indicators were all given by the XGB models.  The 
rela�onships between backscatering coefficients and plant density account for the models’ 
performance. Plant density primarily affects the structure of the plant popula�on. Increasing plant 
density causes more compe��on among individuals for nutrients, water, and light, and consequently 
lowers the quality by increasing fiber contents in the plant. It was reported that the fiber contents (ADF 
and NDF) increased with higher plant densi�es, thus resul�ng in decreasing quality [25–28]. In addi�on 
to VWC, radar backscatering coefficients from vegeta�on are affected by its geometric factors including 
plant density, patern, and height. Dense and high objects increase both �mes and energies of radar 
signals being reflected to the satellite receiver, accordingly higher backscatering coefficients [29–35].  

 

4.2. Performance between estimates with and without environmental factors 

Table 3 shows the comparison of the performance between two groups of inputs, i.e., with and without 
the environmental factors, in different machine learning models. The best result for each feature is 
bolded. When without the environmental factors, the best performance in DMY es�ma�on was obtained 
by the RF and MLP with an R2 of 0.47 and RMSE of 0.87 tons/ha. The averaged errors were s�ll 
compe��ve with previous studies. However, the performance for the fiber indicators and CP was not 



ideal only with the SAR features with the best R2 all lower than 0.2. The performance was significantly 
higher when the environmental factors were added, especially for the quality traits.  

The lower effects of the satellite data could be because we did not account for the separate impacts of 
alfalfa status and soil water content on the radar backscater. Radar signals interact with the vegeta�on 
and soil in alfalfa fields at the same �me. Given the same vegeta�on condi�ons, the radar signals 
experience less atenua�on (weakening) in dry soil and thus lead to higher backscater values. And the 
backscater values at earlier alfalfa growth stages tended to be affected by soil condi�ons as less ground 
was covered when alfalfa was short and thin. Neglec�ng to dis�nguish the effects of soil water content 
from alfalfa traits in the radar backscater data likely contributed to the errors in our es�mates. Going 
forward, we recognize the importance of dis�nguishing these backscater effects as a crucial aspect of 
our future research direc�ons.  

 

Table 3. Performance of the four machine learning models in es�ma�ng alfalfa yield and quality traits. 

Input Alfalfa 
traits 

SVR MLP RF XGB 

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2  RMSE MAE 

W
ith

 E
nv

iro
nm

en
ta

l 
fa

ct
or

s 

DMY 0.53 0.82 0.64 0.53 0.81 0.65 0.59 0.77 0.59 0.64 0.71 0.54 

CP 0.23 2.61 1.83 0.24 2.60 1.92 0.59 1.91 1.39 0.72 1.58 1.13 

ADF 0.27 2.90 2.05 0.26 2.91 2.11 0.35 2.73 1.97 0.54 2.30 1.63 

NDF 0.23 4.91 3.30 0.24 4.88 3.51 0.49 3.98 2.70 0.64 3.36 2.17 

NDFD 0.23 5.44 4.12 0.27 5.30 4.07 0.40 4.82 3.57 0.60 3.94 2.88 

W
ith

ou
t E

nv
iro

nm
en

ta
l 

fa
ct

or
s 

DMY 0.40 0.92 0.74 0.47 0.87 0.71 0.47 0.87 0.69 0.45 0.88 0.70 

CP 0.19 2.69 2.03 0.18 2.70 2.05 0.13 2.77 2.07 0.11 2.82 2.11 

ADF 0.15 3.12 2.32 0.15 3.12 2.34 0.07 3.27 2.48 0.07 3.26 2.41 

NDF 0.01 5.56 3.92 0.04 5.47 4.04 -0.00 5.60 4.11 -0.10 5.85 4.14 

NDFD 0.12 5.82 4.32 0.12 5.81 4.39 0.18 5.62 4.31 0.14 5.75 4.34 

 

4.3. Visualization of the estimated alfalfa DMY and quality traits 

The es�mated maps of an example field are shown in Figure 5 to visualize in-field varia�ons in the alfalfa 
DMY, and quality traits es�mated by the XGB model with both environmental factors and SAR features. 
Each column in Figure 5 shows maps before each cut in the season of 2020. In general, the average 
values of each map corresponded well with their field-level ground data. The es�mated maps also 
demonstrated the spa�al varia�ons of each field. Given complicated interac�ons of weather, in-field 
microenvironments, and management ac�vi�es, alfalfa growth status in fields could be affected as a 
whole or in specific areas. By having the spa�al varia�on maps, further inves�ga�ons could be 
conducted and decisions regarding field management prac�ces, such as �me, amount, and loca�on for 
precision irriga�on, fer�liza�on, and alfalfa cu�ng windows could be made on �me to maximize 
produc�on poten�al, quality, and profitability.   



 

Figure 5. Alfalfa yield and quality maps of field Sutcliffe generated using the XGB model. a, b, c, d, and e 
are maps for DMY, CP, ADF, NDF, and NDFD, respec�vely. Each column was from each of the four cuts in 
2020 with the le�most column from the first cut and the rightmost one from the fourth cut. GT: Ground 
Truth. 

 

4.4. Web tool 

The website has two sec�ons, the map sec�on, and the opera�on sec�on, as shown in Figure 6. The map 
sec�on uses Google satellite map as its base map. Field name and other informa�on are displayed in 
separate windows on the base map. Colors in the colormap on top of the map show the values of 
es�mated yield of the study area with red indica�ng the maximum and green indica�ng the minimum 



values. The informa�on window appears when users click on a field and contains the relevant data of 
each field. 

The opera�on sec�on is below the map sec�on, providing two rows of opera�onal op�ons. In the first 
row, there are two loca�on butons, i.e., Loca�on A and Loca�on B. They can be used to switch the map 
centers between two areas of interest. For example, Loca�on A is centered in the AARS, and B is 
centered in the MARS. As we have saved several yield es�ma�on results of the fields in these two areas, 
the ‘Select All’, ‘Unselect All’ and the year butons in the Filters op�ons are used to select which year's 
yield results to display. The year butons are automa�cally generated based on the years of the saved 
results. In the second row, the ‘Help Menu’ buton is used to display some explana�ons about the web 
tool, including usage instruc�ons, buton descrip�ons, data sources, and model introduc�ons, etc. The 
‘Change Data Date’ buton is used to set the �me range for satellite image search, while the ‘Reset Data 
Date’ buton is used to reset the �me range to the previous month from the current �me. Once the 
dates are changed, all generated Yield images will be updated. The ‘Define Area of Interest’ buton is 
used to define the study area, and the ‘Reset Area of Interest’ buton is used to clear the defined area. 
The ‘Toggle Field Yield’ buton is used to show and hide the yield results. 

 

Figure 6. Interface of the website.  

To view exis�ng yield es�ma�on results in AARS or MARS, users need to first select a loca�on (Loca�on A 
or Loca�on B), then check one or more years (2016-2021), and finally click the ‘Toggle Field Yield’ buton, 
as shown in Figure 7.  



 

Figure 7. Yield map of fields in loca�on A.  

The website tool also allows users to define a new AOI and obtain es�mated yield of the new area over a 
certain �me period. To do so, users need to first set the search �me using the ‘Change Data Date’ buton, 
then define the area using the ‘Define Area of Interest’ buton, and then wait for several seconds for the 
corresponding area to display the yield results. An example of yield es�ma�on map near the Arlington 
sta�on is shown in Figure 8. 

 

Figure 8. Yield map of a newly defined area.  
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